Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vet Microbiol ; 281: 109743, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2304272

ABSTRACT

Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Peptide Hydrolases , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Molecular Docking Simulation , Swine Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL